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Longitudinal ultra-sensitive mutation
burden sequencing for precise minimal
residual disease assessment in AML

Yitian Wu1,5, Shuai Zhang 2,3,5, Ru Feng2, Kangming Xiao4, Ting Wang2,
Jiefei Bai2, Xiaoyu Zhou1, Yuji Wang1, Peng Dai 4 , Hui Liu 2 &
Lucia Ruojia Wu 1

Relapse is one of the major challenges in clinical treatment of acute myeloid
leukemia (AML). Though minimal residual disease (MRD) monitoring plays a
crucial role in quantitative assessment of the disease, molecular MRD analysis
has been mainly limited to patients diagnosed with gene fusions and NPM1
mutations. Here, we report a longitudinal ultra-sensitive mutation burden
(UMB) monitoring strategy for accurate MRD analysis in AML patients
regardless of genetic abnormality types. Using a Quantitative Blocker Dis-
placement Amplification (QBDA) sequencing panel with limit of detection
below 0.01% variant allele frequency (VAF), a hazard ratio of 14.8 (p < 0.001) is
observed in cumulative incidence of relapse analysis of 20 patients with ≥ 2
samples during complete remission (CR). The ROC area under curve (AUC) is
0.98 when predicting relapse within 30 weeks of CR timepoint 2 (N = 20).
Furthermore, we demonstrate quantitating VAF below 0.01% is essential for
accurate relapse prediction.

Acute myeloid leukemia (AML) is a malignant disorder of hemato-
poietic stem cells characterized by the accumulation of immature
myeloid precursors (myeloblasts) in the bone marrow and peripheral
blood. While the development of novel chemotherapeutic drugs and
targeted therapy have enabled a majority of AML patients to achieve
cytomorphologic complete remission (CR), approximately 50% of
patients ultimately experience relapse1. Potentially curative therapy
allogeneic hematopoietic stem cell transplantation (HSCT) during
remission clearly reduces relapse, but the high cost, and nonrelapse
mortality and morbidity counterbalance the beneficial effect. There-
fore, in addition to assessing transplant-related factors when choosing
between allogeneic HSCT and nontransplant strategies, precise iden-
tification of patients at high risk for relapse is the cornerstone of risk-
adapted post-remission therapy selection approaches2. Such stratifi-
cation in AML patients depends on initial disease risk assessment at
diagnosis and the detection of minimal residual disease (MRD) during

remission. As accumulating evidence suggests cytogenetic and mole-
cular prognostic markers that are identified at diagnosis may be
insufficient to estimate the clinical outcome3–5, sensitive and precise
molecular detection of MRD during CR is highly desired6,7.

MRD detection based on immunophenotyping bymulticolor flow
cytometry (MFC) is informativewith a detection limit of approximately
between0.1% and0.01%8,9. However, 20%–70%ofpatients experienced
relapse with low or negative MFC results, indicating limited clinical
sensitivity10. Quantitative detection of leukemia-specific genetic aber-
rations based on RT-PCR, next-generation sequencing (NGS), and
droplet digital PCR (ddPCR) to predict disease relapse has been
explored, which enabled molecular MRD detection in patients with
leukemia fusion genes (such as RUNX1-RUNX1T1, CBFβ-MYH11, PML-
RARα) and NPM1 founder mutations7,11. The applicability is limited to
about 40% of AML patients diagnosed with targetable abnormalities.
The significance of other genetic variants including KIT12, IDH1/213,
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FLT3-ITD14, GATA215, and JAK216, remains to be further demonstrated.
Even for patients with mutations or gene fusions, de novo genetic
aberrations can occur as an alternative cause of relapse which may
cause false negativeMRD calling5,17. It is challenging and highly desired
to develop highly sensitive and specific MRD detection methods to
predict clinical outcomes that are applicable to general AML patients
regardless of their genetic cause for disease.

Here we report an MRD assessment strategy by longitudinal
monitoring of ultra-sensitive mutation burden (UMB) change in
genomic regions that are commonly mutated in AML patients. The
mutation burden analysis is based on the assumption that cancer
cells, regardless of their genetic variation, are more frequently
mutated in the genome than normal cells in the same patient. An
ultra-sensitive mutation quantitation method Quantitative Blocker
Displacement Amplification (QBDA) with a limit of detection (LoD)
below 0.01% variant allele frequency (VAF) recently developed by us
is employed to detect residual disease at an early stage of relapse17.
UMB monitoring strategy allowed early prediction of relapse in
cumulative incidence of relapse (CIR) analysis. A hazard ratio (HR) of
14.8 (p < 0.001) was observed in patients with at least 2 CR sample
timepoints (N = 20). For all patients with at least 1 CR sample time-
point (N = 23), an HR of 11.6 (p < 0.001) was achieved. The area under
the curve (AUC) of the receiver operating characteristic (ROC) curve
was 0.98 when predicting relapse within 30 weeks of CR timepoint 2
(N = 20). Furthermore, we demonstrated the UMB strategy is
applicable to AML patients with various genetic abnormality types at
diagnosis, various treatments, or within different European Leuke-
mia Net (ELN) risk groups.

Results
Design and calibration of UMB quantitation panel
UMB is defined as the sum of VAF of all mutations detected within the
selected genomic regions. According to our hypothesis, cancer cells
have higher genome instability than normal cells and therefore higher
UMB. In bone marrow (BM) aspirate samples, leukemia cell counts
drop to lower values after reaching CR than at diagnosis, contributing
to a decrease inUMB. For patientswith relapse, an increase in leukemia
cells occurs before relapse; while for patients with continued CR, the
number of leukemia cells remains stable or declines during CR.
Therefore, elevated UMB during CR is expected to be a precursor to
relapse (Fig. 1a). Because theMRDduringCR startswith ultra-low levels
of <0.01% VAF18, we decided to use QBDA technology to quantify
various mutations including single base substitutions and indels even
below <0.01% VAF. QBDA integrates uniquemolecular identifier (UMI)
with blocker displacement amplification (BDA)19 for variant enrich-
ment to achieve calibration-free accurate VAF quantitation with low-
depth sequencing. In previous work, QBDA was demonstrated in 5
AML cases diagnosed with NPM1 mutations for MRD detection as a
proof-of-concept study17.

As a measure of residual disease and a potential marker for AML
relapse, the central idea of UMB is to evaluate the mutation burden in
genomic regions that are commonly mutated in AML with ultra-
sensitive quantitation technology. Though a panel covering random
genomic regions may be used for measuring the genome instability,
considering the potential of hotspot mutations to guide the choice of
targeted therapy and considering previous traditional drivermutation-
basedMRDmethods15–17, the panel was designed to cover AML-related
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Fig. 1 | Quantitationof lowVAFmutations andultra-sensitivemutationburden
(UMB) in AML bone marrow (BM) aspirate samples using a hotspot QBDA
NGSpanel. a Schematic showingAMLdisease progression andfluctuation ofUMB.
Based on the assumption that DNA in cancer cells is more frequentlymutated than
in normal cells, an increased UMB indicates a higher likelihood of relapse than a
decreased or stable UMB does. b Summary of mutation VAF detected in AML BM
samples at diagnosis. c Summary of UMB values at diagnosis, two CR timepoints,
and relapse.UMBwas lowerduringCR thanatdiagnosisor relapse,withp =0.0049
between at diagnosis and during CR, and p =0.038 between during CR and at

relapse. During CR, UMB at CR timepoints 1 and 2 were not statistically different
(two-tailed t-test). Central lines represent median values, and the bottom and top
edges of the box represent the 25th and 75th percentile. Thewhiskers extend to 1.5
times the interquartile range, and data points beyond thewhiskers aremarked by +
symbols. d Proportion of ≤0.1% mutations in UMB. In each sample, the ratio
between the sum of VAF for mutations with VAF ≤0.1% and the sum of VAF for all
mutations (total UMB) was calculated and plotted as dots. Median proportion in
diagnosis, CR timepoint 1, CR timepoint 2, and relapse groupswere0.13, 1.00, 0.41,
and 0.06. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-54254-6

Nature Communications |         (2024) 15:9853 2

www.nature.com/naturecommunications


mutation hotspots so that potential driver mutations were also cap-
tured in UMB calculation. The blocker-based, hypothesis-free muta-
tion enrichment nature of QBDA technology allowed us to detect both
residual driver mutation and non-driver mutations caused by genomic
instability in the enrichment regions17.

To efficiently detect mutations associated with AML, we rationally
selected commonly mutated hotspot genomic regions in AML based on
My Cancer Genome (MCG) and COSMIC databases20,21, and designed a
QBDA panel covering a total of 738 nucleotide sites in 28 hotspots of 22
genes. Detailed information of the panel can be found in Supplementary
Data 1. The FLT3-ITD mutation cannot be easily detected by QBDA
because of its large range, thus we used PCR amplification and standard

NGS for the FLT3-ITD site (Supplementary Data 2). In order to calibrate
the quantitation accuracy of the AML QBDA panel, we mixed gDNA
extracted from healthy human peripheral blood mononuclear cells
(PBMC) sample with Myeloid DNA Reference Standard from Horizon
Discovery, as well as plasmids containing mutant sequences, to for-
mulate a synthetic positive sample (Supplementary Data 3), with a
mutation VAF range of 0.0023% to 0.28%. All 28 spike-in mutations in
the synthetic positive sample were observed using the AMLQBDA panel
(Supplementary Fig. 1). Healthy PBMC showed significantly lower UMB
than AML patients’ CR timepoint 2 samples based on a two-tailed t-test.
CR timepoint 1 samples were not significantly different from healthy
PBMC, probably due to the short duration after achieving CR (Supple-
mentary Fig. 2). Mutation observed in the healthy PBMC samples were
likely low-level clonal hematopoiesis of indeterminate potential (CHIP)
mutations. FLT3-ITD panel was similarly calibrated using healthy human
PBMCmixed with cell line DNA (MV-4-11) containing FLT3-ITD mutation
(Supplementary Fig. 1).

Mutation VAF and UMB in AML BM aspirate samples
Next, we tested gDNA extracted from BM aspirate samples at diag-
nosis, relapse (only in relapsed cases), and at least one CR timepoint
using theAMLQBDA and FLT3-ITDpanel. A total of 83 samples from24
AML cases were sequenced. Detailed information can be found in
Supplementary Data 4 and 5. A summary of clinical characteristics of
the AML cases is shown in Table 1. The patients were not selected
based on genomic variation at diagnosis. A total of 221mutations were
detected at diagnosis with VAF ranging between 0.0031% and 11%. The
LoD is about 1% VAF for conventional NGS methods such as whole-
exome sequencing and other hybrid-capture-based panels and is
about 0.1% for standard UMI-based NGS methods22–24. Of all the
mutations detectedbyourAMLpanel, only9.01% couldbedetectedby
conventional NGS, and 14.9% could be detected by NGS with UMIs. In
the 24 samples at diagnosis, only 14 contained >0.1% VAF mutations,
and 10 of these contained >1% VAF mutations. However, mutations
above 0.001% were detected in all samples using QBDA. The results
indicate that there are a large number of ultra-low VAF mutations in
AML samples, which have not been examined in detail in past studies
due to limitations in detection methods; precluding the study of their
roles in diagnosis, monitoring, and prognosis (Fig. 1b).

Next, weperformedUMBanalysis on all diagnosis,CR, and relapse
samples. UMBwas calculated by summing all mutation VAF above LoD
detected by the panel, except forDNMT3A, TET2, and ASXL1 (DTA) and
FLT3-ITD mutations (details can be found in Supplementary Data 4).
DTAmutations are related to clonal hematopoiesis (CH) and are likely
not markers of true MRD based on literature6,12. Moreover, DTA
mutation VAF is high during both CR and active disease periods in
some cases, accounting for a large proportion of the total mutation
burden. Therefore, the quantitation error of DTA VAF may result in an
elevated error of the total UMB. In order to evaluate the effect of DTA
and other CH mutations potentially covered by the QBDA panel12, we
performed UMB analysis excluding different types of CH mutations
(Supplementary Figs. 3 and 4). Excluding only DTA showed the best
overall results. FLT3-ITD was not covered in the UMB calculation and
was analyzed separately.

ThemeanUMB for all cases (N = 24) at diagnosis and relapse were
significantly higher than during CR, which is consistent with our
hypothesis (Fig. 1c). Next, we calculated the sum of mutation VAF ≤
0.1% in each sample and analyzed its proportion in UMB. Analyzing by
median, CR samples had a higher proportion of low-frequency muta-
tions with VAF ≤0.1%. 41% of CR samples had no >0.1%mutations. This
further illustrates the existence and potential significance of low VAF
mutations for MRD monitoring (Fig. 1d). A color-coded version was
added in Supplementary Fig. 5, to distinguish between relapsed and
non-relapsed samples.

Table. 1 | Summaryof clinical characteristics of the cases used
in this study

Characteristic Total (N = 24) UMB+ (N = 9) UMB−(N = 11) p-value

Age at diagnosis
(years)b

67 (45–79) 67 (49–76) 69 (45–79) 0.528

Gendera 0.293

Male 12 (50%) 5 (55.6) 5 (45.5)

Female 12 (50%) 4 (44.4) 6 (54.5)

Laboratory datab

WBC (×109/L) 4.735
(0.69–260.9)

2.24
(0.69–260.9)

5.95
(1.04–90)

0.524

Hemoglobin
(g/L)

92 (51–141) 90 (51–138) 88 (53–141) 0.868

Platelets
(×109/L)

44 (6–192) 45 (12–119) 50 (6–192) 0.703

BM blasts (%) 52.75 (12.5–91) 33 (12.5–90.5) 71.5 (17–91) 0.115

Peripheral blood
blasts (%)

15 (0–94) 10 (0–94) 32 (1–68) 0.281

AML typea

Primary AML 23 (95.8) 8 (88.9) 11 (100) 0.281

MDS history 5 (20.8) 4 (44.4) 0 0.011

FAB subtypea

M1 2 (8.3) 1 (11.1) 1 (9.1) 0.888

M2 15 (62.5) 7 (77.8) 7 (63.6) 0.518

M3 1 (4.2) 0 0 -

M4 3 (12.5) 1 (11.1) 1 (9.1) 0.888

M5 3 (12.5) 0 2 (18.2) 0.196

Molecular markersa

AML1-ETO 1 (4.2) 0 1 (9.1) 0.38

CBFβ-MYH11 1 (4.2) 1 (11.1) 0 0.281

FLT3-ITD/TKD 5 (20.8) 2 (22.2) 3 (27.3) 0.808

IDH mutations 3 (12.5) 0 3 (27.3) 0.098

NPM1 1 (4.2) 1 (11.1) 0 0.281

KIT 3 (12.5) 1 (11.1) 2 (18.2) 0.679

WT1 4 (16.7) 4 (44.4) 0 0.011

2022 ELN risk stratificationa

Favorable 4 (16.7) 3 (33.3) 1 (9.1) 0.196

Intermediate 16 (66.6) 4 (44.4) 8 (72.7) 0.220

Adverse 4 (16.7) 2 (22.2) 2 (18.2) 0.833

HSCTa 1 (4.3) 0 1 (9.1) 0.38

Relapse (days)bc 312 (80–1431) 163 (80–406) 711 (192–883) 0.00029

TheUMB+ andUMB− are evaluated after excludingDTAmutations. Thepercentagemay not sum
to 100 because of rounding. p-values are from a two-tailed t-test.
BM bone marrow, WBC white blood cells, AML acute myeloid leukemia, MDSmyelodysplastic
syndromes, ELN European Leukemia Net, HSCT hematopoietic stem cell transplantation.
aNumber of patients (%).
bMedian (range).
cp-value from a two-tailed log-rank test.
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Relapse prediction by UMB analysis
According to our hypothesis, an increase in UMB during CR is likely a
precursor of relapse.We categorizedAML cases into twogroups based
on the UMB at CR sample timepoint 1 (bCR1) and UMB at CR sample
timepoint 2 (bCR2): UMB+ represents bCR2 > bCR1, i.e., UMB increases
during CR; and UMB− represents bCR2 ≤ bCR1, i.e., UMB decreases or
remains stable during CR. Cases with at least 2 CR timepoints (N = 20)
were used in the analysis. CR timepoint 1 sampleswere collectedwithin
0–159 days after reaching CR, with a median of 0 days. CR timepoint
2 samples were collected 36–493 days after CR, with a median of
121 days. In the cumulative incidence of relapse (CIR) analysis, there
was a significant difference in CR duration between UMB+ and UMB−
groups according to the log-rank test (Fig. 2a), with HR = 14.8 (95% CI,
3.9–56.3), and p = 0.00029. The median relapse time of the UMB+
group was 548 days shorter than the UMB− group (163 days and
711 days after CR for UMB+ and UMB- groups, respectively). In the 17
relapsed patients, the ratio bCR2/bCR1 generally decreased with later
relapse, and an R2 of 0.45 was observed (Supplementary Fig. 6).

In the overall survival (OS) analysis, the HR between UMB+ and
UMB−was2.9 (95%CI, 0.81–10.7), and p =0.19 (N = 20). Thedistinction
between the two groups was less pronounced than in CIR analysis,
which might be a result of varying severity of illness, treatment regi-
men, and response after relapse. Therefore, the duration of survival
was not directly correlated with the duration of remission (Supple-
mentary Fig. 7).

We proceed to make UMB analysis compatible with patients with
only one CR timepoint, by estimating the UMB background using
diagnosis samples and compare it with the UMB of a single CR sample
for analysis of relapse. For anyBMsample, totalUMB, normal cell UMB,
and tumor cell UMB are btotal, bnormal, and btumor, respectively. The
percentage of normal and tumor cells are pnormal and ptumor, respec-
tively; then we have pnormal + ptumor = 1, and

btotal =pnormal ×bnormal +ptumor ×btumor ð1Þ

We assumed that theUMBbackground bbackground = bnormal for the
same patient, which remains constant across different timepoints. In
diagnosis samples with high BM blast percentage (pblast), it can be
assumed that ptumor ≈ pblast. In addition, because healthy individuals
have few >1% somatic mutations, mutations greater than 1% can be
considered to bemainly brought by tumor cells. Therefore, the sumof
the VAF of >1% mutations b>1% ≈ ptumor × btumor. Therefore, bbackground
can be estimated as:

bbackground = bnormal =
btotal � ptumor ×btumor

1� ptumor
� btotal � b>1%

1� pblast
ð2Þ

Based on the ratio between CR sample UMB (bCR) and bbackground,
we categorized the samples with 1 CR timepoint into two groups:
adjUMB+ and adjUMB−. AdjUMB+ represented bCR/bbackground > 1, and
the rest were adjUMB−. For cases with ≥2 CR timepoints, bCR2/bCR1 > 1
were categorized as adjUMB+, and the rest as adjUMB−. InCIR analysis,
therewas a significant difference inCRduration between adjUMB+ and
adjUMB- groups according to the log-rank test (Fig. 2b): HR = 11.6 (95%
CI, 3.4–39.5), and p =0.00031. The median difference in CR duration
between the two groups was 532 days (179 days and 711 days for
adjUMB+ and adjUMB−, respectively). Because of inaccuracies in the
bbackground estimation, the HRwas lower than the analysis using twoCR
timepoints. Case #10 was lost to follow-up immediately after CR and
thus was not included in the analysis. Data for adjusted UMB ratio
using only one CR timepoint for relapse prediction can be found in
Supplementary Fig. 8. The estimation of bbackground wasmainly focused
on filtering out high VAF non-background mutations. As it is challen-
ging to set a judicious cutoff especially considering itmight differ from
patient to patient, the bbackground may be inaccurate. When there is no

mutation above 1% VAF at diagnosis, the bbackground is likely over-
estimated. Our recommended best approach for relapse prediction is
by comparing bCR1 and bCR2.

It is worth noting that relapse cannot be predicted using only the
absolute value of UMB without comparing it to the UMB of other CR
samples or the estimatedUMBbackgroundof the same patient. Due to
differences in age, lifestyle, genetic factors, etc., the UMB background
varies greatly from person to person and cannot be used directly for
relapse monitoring (Supplementary Fig. 9).

Because UMB+ and UMB− groups had significantly different CR
durations, next we studied whether the ratio between UMB in 2 CR
timepoints is predictive of relapse time. Using bCR2/bCR1 to predict
whether relapse would occur within 30 weeks of CR timepoint 2, we
calculated specificity and sensitivity at different bCR2/bCR1 values. The
AUC of the ROC curve was 0.98 (N = 20). Under the condition of bCR2/
bCR1 = 1, sensitivity was 90% and specificity was 100%. The result indi-
cates that the bCR2/bCR1 parameter can accurately predict relapse
within a time window of 30 weeks after the second CR timepoint
(Fig. 2c). ROC analysis of different intervals after CR timepoint 2 are
shown in Supplementary Fig. 10. ROC AUC were all greater than 0.82
between 15 and 45weeks, and the highest ROCAUCwas0.98when the
interval was 30 weeks. Analysis of null AUC distribution calculated by
1000 simulations of randomly permuted outcome labels is shown in
Supplementary Fig. 11.

We also tested the adjusted UMB ratio for the prediction of
relapse in N = 23 cases with ≥1 CR samples. Adjusted UMB ratio was
defined as bCR/bbackground for cases with 1 CR sample, and bCR2/bCR1 for
cases with ≥2 CR samples. The ROC AUC of predicting relapse within
30 weeks of CR timepoint 2 (for cases with ≥2 CR samples) or CR
timepoint 1 (for cases with 1 CR sample) was 0.90; under the condition
of adjusted UMB ratio = 1, sensitivity = 83.3% and specificity = 100%.
Because of inaccuracies in bbackground estimation, the predictive accu-
racy was lower than using 2 CR timepoints (Fig. 2d).

An M3 case with only 1 CR timepoint was included in Fig. 2b, d
analysis. Though M3 is different from other AML subtypes in terms of
leukemic cellular characteristics, prognosis, and therapeutic approa-
ches, we were able to successfully predict no relapse within 30 weeks
after CR timepoint 1 using adjusted UMB ratio bCR/bbackground =0.50 < 1.

Significance of quantitating mutations with VAF <0.01% for
UMB-based relapse prediction
To investigate the effect of ultra-low VAF mutations on UMB-based
relapse analysis, we next calculated UMB using only >0.01%, >0.1%,
or >1% mutations, simulating the experimental results of various
detection techniques with different VAF LoD. We performed the CIR
and ROC analyses as described above, and compared them with the
results using all mutations detected by QBDA (i.e., >0.001% VAF).
The results illustrate that p < 0.05 between UMB+ and UMB− groups
in the CIR analysis was not achieved when only >0.01%, >0.1%, or >1%
mutations were used (Fig. 2e). HRwas also the highest when using all
mutations (Supplementary Fig. 12 and 13). The ROC AUC for pre-
dicting relapse increased with improving LoD (Fig. 2f). These results
collectively suggest that UMB-based relapse prediction requires
<0.01% VAF LoD. The ultra-sensitive QBDA technology enables UMB
as a biomarker for monitoring AML disease progression. All the HR,
p values, and ROC AUC values were summarized in Supplemen-
tary Data 6.

In addition to predicting relapse in the relatively short term, UMB
can potentially be used for long-term MRD monitoring with more
longitudinal samples. In case #4, CR timepoint 2 with decreased UMB
compared to CR timepoint 1 successfully predicted no relapse within
30 weeks of CR timepoint 2. Moreover, an additional sample at CR
timepoint 3 was collected. UMB at CR timepoint 3 (day 309 post-CR)
increased compared to CR timepoint 2, which was consistent with the
following relapse on day 491, demonstrating the potential utility of
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continuous UMB monitoring to capture signs of relapse and to guide
prompt treatment (Fig. 2g).

Based on the WES results of 8 diagnosis samples, we observed a
small number of pathogenic mutations (median, 2; range, 0–3) per
patient (Supplementary Data 7), which was consistent with the
literature25. >99.99% of mutation calls were germline, nonpathogenic
SNVs. In the further longitudinal WES analysis of the diagnosis, CR
timepoint 1, 2, and the relapse sample of patient #8, both WES and
QBDA detected the driver mutations at diagnosis (CEBPA and KIT
mutations).WESdid not detectCEBPAorKITmutations duringCRor at
relapse, while QBDA was able to detect and quantify them (Supple-
mentary Data 8), because of the difference in VAF LoD.

MRDdetection in caseswith different genetic abnormality types
at diagnosis
According to the 2022 ELN recommendations, the confirmed bio-
markers for MRD detection in AML are NPM1 mutations and gene
fusions including RUNX1-RUNX1T1, CBFB-MYH11, and KMT2A-MLLT3;
the significanceof other genemutations such as IDH1 and IDH2 are not
clear13,26. In this study, NPM1-positive cases accounted for 20.8% of the
tested cases, which is close to the percentage reported in literature27.
RUNX1-RUNX1T1, CBFB-MYH11, and KMT2A-MLLT3 gene fusion-positive
cases together accounted for 8.3% of the tested cases; literature
reported 17.5% fusion-positive in all cases (Fig. 3a, b)28. The difference
between experimental and reported proportions might be a result of
the high average age of the cases in this study.

We defined double negative as neither positive for NPM1 muta-
tions nor for gene fusions. The MRD of the remaining 70% double
negative cases cannot be accurately analyzed by conventional meth-
ods. Therefore, we specifically investigated whether UMB can assess
MRD and predict relapse in these cases. Similar to the section “Relapse
prediction by UMB analysis”, we performed CIR analysis and predic-
tion of relapsewithin 30weeks of CR timepoint 2 (for cases with ≥2 CR
samples) or CR timepoint 1 (for cases with 1 CR sample) for only the
double negative cases using the adjusted UMB ratio. In CIR analysis,
therewas a significant difference inCRduration between adjUMB+ and
adjUMB− groups according to the log-rank test (Fig. 3c), with HR = 16.7
(95% CI, 4.1–67.6), and p =0.00034. The median difference in CR
duration between the two groups was 553 days (194 days and 747 days
for adjUMB+ and adjUMB−, respectively). Using adjusted UMB ratio
(bCR2/bCR1 and bCR/bbackground) to predict whether relapse would occur
within 30 weeks showed ROC AUC= 1.00, indicating that changes in
UMB can accurately predict relapse for double negative cases (Fig. 3d).

Among the cases with NPM1 mutations at diagnosis, QBDA
reported no NPM1 mutation during CR in case #16, which was con-
sistent with the UMB− result and a favorable outcome of no relapse at
the last follow-up visit (343 days after CR timepoint 2). Case #3 and#14
had positiveNPM1 results but negative UMBduring CR. Their outcome
of no relapse within 30 weeks of CR timepoint 2 was consistent with
theUMB− results. These 2 cases eventually relapsed, therefore the very
low VAF NPM1 mutations (0.0051% and 0.068%, respectively) may
predict relapse in the long term (Fig. 3a).
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In the double negative cases, 50% of them bore >0.1% VAF
pathogenic mutations detected at diagnosis. Based on previous
research29, these mutations may be used as a biomarker for MRD
(Supplementary Data 4). For example, in case #20, GATA2 mutation
was detected at diagnosis and was below the detection limit at CR
timepoint 1. A VAF of 0.38% was observed at CR timepoint 2, and this
patient relapsed 143 days after reaching CR. The upward trend of UMB
during CR was consistent with the GATA2 VAF, which also predicts
relapse in advance (Fig. 3e). UMBwas also successfully applied to cases
in which residual diseases cannot be well inferred by a single patho-
genic mutation. In case #8, there were KIT and CEBPA mutations with
>0.1% VAF at diagnosis. KIT mutation VAF increased and CEBPA VAF
decreased during CR, making it difficult to predict relapse by a single
mutation. On the other hand, UMB clearly increased during CR, which
successfully predicted relapse within 30 weeks of CR timepoint 2
(Fig. 3f). In case #7, no >0.1% VAF mutation was detected at diagnosis,
but relapse within 30 weeks of CR timepoint 2 could also be predicted
by the rise of UMB during CR (Fig. 3g). Collectively, these results
demonstrate that UMB provided accurate MRD detection and early
warning of relapse for double negative cases, which account for more
than 60% of all AML cases lacking methods to accurately analyze
molecular MRD. UMB-based MRD analysis may improve the prognosis
of more AML patients by performing timely medical interventions.
VAF,UMB, andblastpercentagefluctuationofother cases are shown in
Supplementary Fig. 14.

We also tried to predict relapse using the VAF fluctuation of one
>0.1% VAF pathogenic mutation in each case instead of using the
UMB approach. In the 20 cases with at least 2 CR samples, only 12
(60%) have mutations with >0.1% VAF at diagnosis, including the
NPM1-positive and some double negative cases. In the 12 cases, the
mutation with the highest VAF at diagnosis was used for relapse
prediction.We observed anHR of 3.0with p = 0.45 (N = 12) in the CIR
analysis (Supplementary Fig. 15a); ROC for predicting relapse within
30 weeks of the second CR timepoint was 0.71 (Supplementary
Fig. 15b). The prediction accuracy was lower than that of the UMB
approach.

UMB analysis using different panel sizes and the impact of
existing and emerging mutations
Currently, 738 nucleotide loci in 22 genes were used to calculate UMB,
and we next investigated the effect of the number of genes included in
the UMB panel for relapse prediction. The 22 genes were ranked
according to the mutation frequency in AML in the MCG database
(Fig. 4a). Using all samples from CR timepoint 1, we calculated the
averagemutation rate per base for each gene. Themeanmutation rate
of the first 11 genes in Fig. 4a was greater than that of the last 11 genes
(p = 0.063 when comparing the two groups by t-test), suggesting that
geneswith highMCG rankingmight bemoreprone tomutation inAML
(Fig. 4b). This indicates that it could be beneficial to use AML-
associated gene hotspots when calculating UMB, and these locations
capturemutationsmoreefficiently thanother locations in the genome.
Next, we calculated UMB using different panel sizes and investigated
the discrimination between UMB+ and UMB− groups in CIR analysis.
We calculated UMB using mutations in topm genes (m ≤ 22) based on
the rank in Fig. 4a. The HR of UMB+ to UMB− tended to be positively
correlated with the number of genes (R2 = 0.87) (Fig. 4c). When the
number of genes is not lower than 15, p <0.05 was achieved in CIR
analysis (Supplementary Fig. 16). We also performed relapse predic-
tion within 30weeks of CR timepoint 2 using UMBwith different panel
sizes (Fig. 4d). ROC AUC was also positively correlated with the num-
ber of genes (R2 = 0.92), with ROC AUC>0.80 when the number of
genes m ≥ 10. Overall, more accurate predictions were obtained using
larger panels, with the smallest feasible panel size being about
15 genes.

During the tumor disease progression, the profile of mutation is
constantly changing due to subclone evolution. Some mutations that
were prominent at diagnosis may decline significantly or even dis-
appear after treatment because they are sensitive to therapeutic
approaches, while new mutations and previously low VAF subclones
that are resistant to therapy may become dominant. We categorized
mutations during CR into existing and emerging types and studied
their roles in UMB. Existing mutations are those detected in diagnosis
samples and alsopresent duringCR; emergingmutations are thosenot
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detected in diagnosis samples and newly emerged during CR. In CR
timepoint 1 samples, the existing mutations had higher VAF than the
emerging mutations (p =0.035 by t-test), but in CR timepoint 2 sam-
ples, the two groups were closer (p =0.055), indicating there is a ten-
dency for emerging mutation to rise during CR (Fig. 4e). When using
only existingor emergingmutations to calculateUMBandperformCIR
analysis, the HR for UMB+ to UMB− were both greater than 1. The HR
using existingmutations was greater than that of emergingmutations,
indicating that existing mutations are more effective than emerging
mutations in predicting relapse. The result implies that relapse in the
time period of this study (within 883 days) is more often associated
with uncleared subclone present at diagnosis than with newly gener-
ated mutations (Fig. 4f). It was worth noting that the standard UMB
analysis considering all mutations exhibited the best performance
(Fig. 4g) and streamlined bioinformatics analysis.

UMB-based AML risk assessment in ELN intermediate risk group
and hypomethylating agents+ venetoclax cases
The current consensus for AML risk assessment is the 2022 ELN risk
classification, which divides patients into three risk categories based
on their genetics at initial diagnosis: favorable, intermediate, and
adverse. In this study, the proportion of favorable, intermediate, and
adverse were 16.7%, 66.7%, and 16.7%, respectively (Fig. 5a). An effec-
tive MRD monitoring method is especially desired for cases assigned
to the intermediate group. To demonstrate that UMB is applicable to
these patients, we performed UMB analysis specifically on the ELN
intermediate group. In CIR analysis, the HR of UMB+ to UMB−

according to the log-rank test was 93.5 (95% CI, 8.7–1008.3), with
p =0.0017 (Fig. 5b). Themedian difference in CRduration between the
two groups was 525 days (200 days and 725 days). Using bCR2/bCR1 to
predict whether recurrence would occur within 30 weeks of CR time-
point 2 showed an ROC AUC of 1.0 (Fig. 5c). The UMB-based risk
assessment can potentially be used to guide medical interventions for
the higher-risk cases promptly.

Among the cases in this study, 62.5% were treated with hypo-
methylating agents in combination with venetoclax (Fig. 5d) as these
patients were evaluated as unsuitable for intensive chemotherapy
based on a comprehensive geriatric assessment30. Here the hypo-
methylating agents and venetoclax group had a mean age of 69
years, which was higher than that of the intensive chemotherapy
group (59 years old). To demonstrate compatibility with cases
receiving the combination therapy, we performed UMB analysis on
the hypomethylating agents and venetoclax group. In CIR analysis,
UMB+ had a significant effect with HR = 8.9 (95% CI, 2.2–36.0),
p = 0.0069 (Fig. 5e). The median difference in CR duration between
the two groups was 539 days (200 days and 739 days). Using bCR2/
bCR1 to predict whether recurrence would occur within 30 weeks
of CR timepoint 2 had ROC AUC of 0.97 (Fig. 5f). Collectively,
we demonstrate that UMB may be used as companion diagnostics
for monitoring treatment outcomes and assessing disease progres-
sion in cases with various genetic abnormality types, ELN risk
groups, or treatments. UMB-based MRD assessment may further
assist medical decision-making, such as adjustment of treatment
and dosages.
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Discussion
Sensitive detection of MRD in AML plays a critical role in both disease
monitoring and clinical decision-making. Current methods based on
analysis of gene aberrations have enabled MRD detection only in
patients with NPM1 mutations or gene fusions and are not widely
applicable. We established an ultra-low VAFmutation enrichment NGS
panel based on QBDA technology to target hotspot mutation regions
for quantitation of <0.01% VAFmutations. Based on this technique, we
were able to accurately detect small changes in a patient’s mutation
profile during CR and quantify this metric using ultra-sensitive muta-
tion burden (UMB). Consistent with our hypothesis that UMB may
increase before relapse, we performed CIR analysis and observed that
the HR for UMB+ (i.e., the group of patients with elevated UMB during
CR) to UMB- was 14.8 with p <0.001. ROC for predicting relapsewithin
30 weeks of the second CR timepoint was 0.98. Different initial
mutation types and treatment regimens did not affect the prediction
of relapse. We demonstrated that UMB prediction of relapse clearly
requires ultra-sensitive mutation detection with VAF LoD <0.01%.
Mutation burden only considering variants with allele frequency
>0.01% failed to distinguish the positive group from the negative
group in CIR analysis.

We performed OS analysis and observed that the HR for UMB+ to
UMB- was 2.9 with p >0.05. ROC for predicting survival within
50 weeks of the second CR timepoint was 0.66. The effect of UMB in
predicting survival was not as good as relapse, as OS is related to
several factors, including the patient’s age, functional status, nutri-
tional status, hyperleukocytosis, comorbidities, genetic andmolecular
characteristics, treatment after relapse and so on31.We have previously
conducted research on the AML prognostic assessment system30,32,
and hope to combine it with UMB to better assess the prognosis of
AML patients in the future.

We also performed a relapse analysis using MFC and compared
the results to UMB. Based on the ELN guidelines26, we used the first CR
timepoint for prediction and categorized AML cases based onwhether
there were ≥0.1% leukemic blasts in the bone marrow. In CIR analysis,
there was no significant difference in CR duration between the 2
groups according to the log-rank test (Supplementary Fig. 17a, b).
Therefore, using the MFC absolute blast percentage alone did not
seem effective in separating early and late relapse cases. Based on our
analysis of UMB, we speculated that the fluctuation could be more
effective in relapse prediction than absolute values, thus we next
analyzedMFCdata basedon the ratio between the 2CR timepoints.We
categorized AML cases into two groups based on whether the MFC
blast percentage had increased during CR. Cases with at least 2 CR
timepoints (N = 20) were used in the analysis. In CIR analysis, we
observed HR= 4.0 (95% CI, 1.3–13.0), and p =0.040, which was sig-
nificant but not as good as UMB (Supplementary Fig. 17c). We next
tried to predict whether relapse would occur within 30 weeks of CR
timepoint 2 using the change in blast percentage, and observed that
the AUC of the ROC curve was 0.53 (N = 20, Supplementary Fig. 17d).
The predictive accuracy was lower than using UMB (AUC=0.98).

Due to the relatively small cohort size, we did not perform relapse
prediction with an independent test dataset. A larger cohort size with
an independent test dataset will help to further evaluate the clinical
applicability of the UMB-based strategy.

The current clinical standard practice for AML sample collection
and storage is to use BM samples. We also analyzed 2 CR PBMC samples
from 2 different cases by QBDA, and the results preliminarily indicate
that the mutation profiles are similar in PBMC and BM samples, and the
UMB of PBMC is lower than that of the corresponding BM (Supple-
mentary Fig. 18 and Supplementary Data 9). We are also planning to
collect more PBMC samples for validation in our follow-up work.
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Fig. 5 | UMB-based relapse prediction is applicable to patients in the ELN
intermediate risk group or treated with targeted therapy. a Proportion of
European Leukemia Net (ELN) risk groups in tested cases (N = 24). b UMB analysis
classifies the ELN intermediate group into high and low risk of relapse. UMB+group
showed shorter median relapse time (200 days) than UMB− did (725 days)
(p =0.0017, two-tailed log-rank test). c ROC of predicting relapse within 30 weeks
of CR timepoint 2 in the ELN intermediate group. d Proportion of intensive

chemotherapy, and hypomethylating agents + venetoclax in tested cases (N = 24).
e UMB analysis in hypomethylating agents and venetoclax cases. UMB+ cases were
athigher risk of relapse (median relapse time200days) thanUMB− cases (739days)
(p =0.0069, two-tailed log-rank test). f ROC of predicting relapse within 30 weeks
of CR timepoint 2 in hypomethylating agents and venetoclax groups. Source data
are provided as a Source Data file.
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We hypothesize that a significant portion of stochastic mutations
caused by genome instability in tumor cells have VAFs lower than
0.01%, so traditional mutation detection methods, such as conven-
tional NGS with LoD around 1% and standard commercially available
UMI-based NGS with LoD around 0.1%, were unable to effectively
detect small changes in UMB. Compared to other ultra-sensitive UMI-
based methods (e.g., DuplexSeq33, SaferSeqS34, etc.), QBDA enriches
any variants that differ from the WT sequence by multiplexed PCR,
which has the advantages of low sequencing depth requirement,
accurate quantification, high conversion yield of the original biological
DNA molecules, fast library preparation and bioinformatics for use in
clinical research. ddPCR-based methods also have sensitive LoD and
are relatively fast compared to NGS-based methods, but the mutation
detection range is generally lower than 10 mutation sites, which is
insufficient to calculate UMB.

We validated the effectiveness of a panel containing 22 genes for
UMB calculation and found that the prediction accuracy (HR, ROC
AUC) improved with increasing gene number. The current panel has
not clearly arrived plateau in predicting accuracy, thus using a panel
that covers a larger region may further improve the performance. On
theother hand, using apanel covering a smaller genomic region, itmay
be possible to achieve UMB quantitation using a multiplexed real-time
PCR-based approach with a simpler experimental process than NGS.

The current panel evaluates both AML-related driver mutations
and genome instability-related non-driver mutations. In this manu-
script, we used the sum of both as a measure of residual disease and
did not distinguish the contribution components inUMB.Basedon the
results, this UMBstrategywas accurate inpredicting relapse regardless
of the mutation type the patient carries. Comparing the performance
of a non-hotspot, instability-based panel with the standard hotspot
panel might provide a further understanding of the biological
mechanisms of UMB.

All the patients selected in this study were AML patients, but the
hypothesis of higher UMB in tumor cells may be applicable in other
cancer types as well. In liquid tumors other than AML, it is likely that
relapse can be predicted by monitoring UMB changes in BM or blood
samples. The UMB method may also be applied in monitoring the
relapse of solid tumorsusing different sample types, e.g. urine samples
(tumors of the urinary system), fecal samples (colorectal cancer), or
cell-free DNA in the blood. In addition, the mutation profile varies in
different cancers, thus designing panels covering highly mutated
genes and hotspot regions of the target cancer typemay be important
for UMB-based analysis.

Methods
Ethical statement
Our research complies with all relevant ethical regulations. All human
studies were performed under the approved protocol of the Beijing
Hospital Research Ethics Committee (approval letter No. 2018BJYYEC-
154-02).

Oligonucleotides and reagents
Oligonucleotides andplasmidswereordered fromSangonBiotech and
RuiBiotech (see Supplementary Data 1 and 2 for nucleotide sequen-
ces); Hot Start Flex DNA Polymerase and Dual Index Primers Set1 were
purchased from NEW ENGLAND BioLabs Int; dNTPMix was purchased
from Vazyme; AMPure XP beads were purchased from Beckman
Coulter Life Sciences; Myeloid DNA Reference Standard was pur-
chased from Horizon Discovery. Healthy human PBMC samples were
voluntarily provided by the authors of this work. MV-4-11 cell line was
purchased from Fenghuishengwu, China.

Patient selection and sample collection
Twenty-four AML patients diagnosed at the Department of Hematol-
ogy, Beijing Hospital, Beijing, China, between January 2018 and June

2023 were collected for this study (clinical information summarized in
Supplementary Data 10). AML was diagnosed according to the World
Health Organization (WHO) diagnostic criteria35. All patients had
achieved morphologic CR, defined by the 2022 ELN recommendation
after standard induction chemotherapy.

A total of 83 BM aspirate samples (including 24 samples at diag-
nosis, 24 samples of CR timepoint 1, 20 samples of CR timepoint 2,
2 samples of CR timepoint 3, and 13 samples at relapse) were collected
for this study (sampling time information summarized in Supple-
mentary Data 11). All samples were stored in a 1.5mL RNase-free
polypropylene (PP) tube at –80 °C until DNA was extracted. Genomic
DNA of all BM samples was extracted from samples using Lab-Aid 824
Nucleic Acid Extraction instrument (Zeesan, China) and QIAsymphony
DNA Mini Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s guidelines and quantified with NanoDrop One (Thermo
Fisher). The BM aspirate smear was stained using the Wright–Giemsa
stain, the blast percentage was determined by counting 200 nucleated
BM cells under a microscope.

The retrospective study was approved by the Beijing Hospital
Research Ethics Committee (approval letter No. 2018BJYYEC-154-02),
and written informed consents were obtained from all participants in
accordance with Institutional Review Board guidelines and the
Declaration of Helsinki. Clinical information was obtained from elec-
tronic medical records. All data were deidentified. This study did not
provide participant compensation. Gender was not taken into account
in the experimental design. The sex and/or gender of participants were
ascertained according to self-report. Sex or gender analysis was not
conducted in the study, as this study aims to develop a longitudinal
UMB monitoring strategy for MRD analysis of various AML patients,
regardless of their gender.

QBDA and FLT3-ITD library preparation and sequencing
QBDA library preparation was conducted according to our previous
study17. 1000ng of gDNA was used to prepare sequencing libraries and
QBDA Library preparation consisted of three PCR reactions: UMI addi-
tion and pre-amplification, BDA amplification, and index PCR, all per-
formedonT100Thermal Cyclers (Bio-Rad). DNA samplewasmixedwith
the specific forward primer (SfP), and specific reverse primer (SrP) and
amplifiedusing Phusion polymerase. The concentration for each SfP and
SrP was 15 nM. Thermal cycling condition was: 98 °C:30 s − (98 °C:10
s−63 °C:30min− 72 °C:60 s) × 2− (98 °C:10 s−63 °C:20 s− 72 °C:60 s) ×
2− (98 °C:10 s− 71 °C:20 s− 72 °C:60 s) × 5− (72 °C:5min)−4 °C:hold.
During the last 5min of the second 30min at 63 °C, 1.5μM of universal
forward primer (UfP) and 1.5μM of universal reverse primer (UrP) were
addedwhile keeping the reactions inside the thermal cycler. Double-side
size selection (0.3×, 1.6× ratio) was performed to remove long gDNA,
followed by another 1.6× AMPure XP beads purification. Next, BDA for-
ward primer (fP), BDA blocker, Phusion polymerase, dNTPs, and PCR
buffer were mixed with the purified PCR product for BDA amplification.
Thermal cycling condition was: 98 °C:30 s − (98 °C:10 s−63 °C:5min−
72 °C:60 s) × 23−4 °C:hold. The reactionmixturewas purifiedusing 1.8×
AMPure XP beads. BDA adapter primer (Adapter_fP) and UrP are mixed
with the purified PCR reaction mixture and amplified. Thermal cycling
condition was: 98 °C:30 s− (98 °C:10 s −63 °C:5min− 72 °C:1min) × 2–
4C:hold. The reactionmixturewaspurifiedusing 1.6×AMPureXPbeads.
Standard NGS index PCR and library normalization are performed
afterward. Sequencing was performed using NovaSeq (PE150, Illumina,
San Diego, CA, USA).

FLT3-ITD library preparation consisted of PCR amplification and
standardNGS, all performedon aT100Thermal Cycler (Bio-Rad). First,
a 100 ng DNA sample was mixed with the barcoded forward primer
(BfP) and barcoded reverse primer (BrP) and amplified using high-
fidelity Phusion polymerase. Each sample corresponds to a unique
sample barcode. The final concentration for each BfP and BrP was
500 nM. Thermal cycling condition was: 98 °C:30 s − (98 °C:10 s − 63 °
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C:60 s − 72 °C:60 s) × 15 − 4 °C:hold. The reaction mixture was purified
using AMPure XP beads (1.8× ratio) once, followed by standard NGS
index PCR. Libraries were normalized, and sequencing was performed
on NovaSeq (PE250).

QBDA and FLT3-ITD data analysis
QBDA data analysis, including NGS data preprocessing, UMI-based
mutation calling, and mutation filtering steps, was conducted using
the analysis pipeline for QBDA variant calling available from GitHub
(https://github.com/wyt228/UMB) according to our previous study17.
For FLT3-ITD data analysis, adapter sequences were removed, and
sample barcode sequences were extracted (4 nt in BfP, and 4 nt in BrP)
using custom Python software. The processed sequences were then
aligned to FLT3 amplicons using Bowtie236. Sample barcode analysis
and ITD calling were performed using custom Python software. In this
manuscript, the VAF of a specific variant was defined as
VAF = 100%×Mv/Mt, whereMv is the number ofDNAmolecules bearing
this variant, andMt is the total number of DNAmolecules at this locus,
including wild type and all sequence variants. All VAF values were
expressed as percentages. Detailed calculations of QBDA mutation
calls can be found in our previous publication17.

Gene fusion detection
Take 2mL of BM samples anticoagulated with EDTA and separate
mononuclear cells (PBMCs) using Ficoll solution (Solarbio Life Sci-
ences, Beijing, China), according to the manufacturer’s protocol. Use
the TRIzol method (provided by Invitrogen in the United States) to
extract RNA fromnucleated cells, reverse transcription, and synthesize
cDNA. AML-related fusiongenesweredetectedusing PromegaGoTaq®
GreenMaster Mix according to the manufacturer’s protocol. The
tested fusion genes include MLL-FOXO4(MLL-AFX1), MLL-MLLT4(MLL-
AF6), MLL-ELL, MLL-EPS15(MLL-AF1P), MLL-MLLT6(MLL-AF17), MLL-
MLLT10(MLL-AF10), MLL-PTD, TCF3-PBX1(E2A-PBX1), TCF3-HLF(E2A-
HLF), ETV6-RUNX1(TEL-AML1), STIL-TAL1, RUNX1-RUNX1T1(AML1-ETO),
RUNX1-MDS1-EVI1(AML1-MDS1-EVI1), FUS-ERG(TLS-ERG), PML-RARA,
MLL-AFF1(MLL-AF4), MLL-MLLT1(MLL-ENL), MLL-MLLT3(MLL-AF9), MLL-
MLLT11(MLL-AF1Q), CBFB-MYH11, BCR-ABL1, ETV6-ABL1(TEL-ABL1),
ETV6-PDGFRB(TEL-PDGFRB), ETV6-MN1(TEL-MN1), DEK-NUP214(DEK-
CAN), SET-NUP214(SET-CAN), RUNX1-RPL22P1(AML1-EAP), ZBTB16-RAR-
A(PLZF-RARA), NPM1-RARA, and NPM1-MLF1.

Multiparameter flow cytometry (MFC)
MFC assays were performed to assess MRD in BM aspirates. The assay
aimed to detect blasts or immature cells based on the immune-
phenotypic expression of molecular markers associated with AML.
Mononuclear Cells (MNCs) were isolated from the BM by density
centrifugation. Approximately 1 × 106 MNCs per sample were then
incubated with different fluorescein-labeled antibodies (purchased
from BD Biosciences). Antibodies were diluted with phosphate-
buffered saline according to the manufacturer’s instructions. Dilu-
tion ratio was 1:20 for CD45-V500 (560777), 1:5 for CD34-PerCP
(347203), 1:20 for CD117-PE-Cy7 (339195), 1:5 for CD33-APC (561817),
1:5 for CD13-PE (347406), 1:5 for HLA-DR-FITC (347363), 1:5 for CD36-
APC (550956), 1:5 for CD64-PE (558592), 1:20 for CD56-V450 (560360),
1:20 for CD4-APC-H7 (560158), 1:5 for CD123-PE (340545), 1:20 for
CD16-FITC (561308), 1:20 for CD38-V450 (561378), 1:20 for CD14-APC-
H7 (560270), and 1:20 for CD19-PE-CY7 (341113). Cells were then
detected by a flow cytometer (BD FACSCantoTM II) and analyzed by
FlowJo software v10.6.2 (BD Biosciences).

Whole-exosome sequencing (WES)
Briefly, DNA was extracted from fresh frozen tissue blocks using a
QIAGEN QIAamp DNA Mini Kit. For WES, library construction and
whole-exome capture of genomic DNA were performed using the
SureSelectXT Reagent Kit (Agilent) and SureSelectXT Human All Exon

V6 Kit (Agilent). The captured DNAwas then sequenced on an Illumina
HiSeq 2500 sequencing platform with 150-bp paired-end sequencing.
Sequencing and bioinformatics services were provided by Clinical
Biobank, Beijing Hospital, and Novogene.

Statistical analyses
All statistical analyses were performed with MATLAB R2018b (Math-
Works Inc, MathWorks, Natick, USA), Python2.7 (Python Software
Foundation, Netherlands), and Microsoft Excel (Microsoft Corp, Red-
mond, WA, USA). Cumulative incidences of relapse (CIR) were defined
from the date of complete remission to the date of relapse or death.
Overall survival (OS)wasdefined from the date of diagnosis to the date
of death or last follow-up. CIR and OS curves were plotted using the
Kaplan–Meier method and analyzed with the log-rank test. A Cox
proportional hazards analysis was used to evaluate the relationship
between the relapse (or survival) outcome and exposure variables.
Results were expressed as the HR with a 95% confidence interval (95%
CI). ROC AUC values were calculated as the area under the ROC curve.
A p <0.05 was considered statistically significant. ns, not significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequences of the DNA oligonucleotides used for AML QBDA
panels and FLT3-ITD, QBDA, and FLT3-ITD test results, and clinical
sample information are included in Supplementary Data 1–2, 4–5, and
10–11. Source data are provided with this paper. The sequencing data
has been deposited in the National Genomics Data Center (NGDC) GSA
for human database and can be found at https://ngdc.cncb.ac.cn/gsa-
human/browse/HRA006832. The sequencing data is publicly avail-
able. Source data are provided with this paper.

Code availability
NGS data analysis pipeline for QBDA variant calling is available from
GitHub (https://github.com/wyt228/UMB) and can be found at https://
doi.org/10.5281/zenodo.13908530.
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